Author Topic: Estimation of Memory in Relaxation.  (Read 237 times)


  • Newbie
  • *
  • Posts: 3
    • View Profile
Hello, I joined this community 2 months ago.

I'm wondering how to estimate the memory capability of the computation.

When I run relaxation program, It seems that it mainly depends on the value (N+M-1 over N).

But the allocated memory scale grows much faster than that when I changed N and M values.

When other parameters are fixed, how does the allocated memory size depend on M and N?


  • Administrator
  • Newbie
  • *****
  • Posts: 16
    • View Profile
Hi there!

The memory needed for a computation with MCTDH-B for the coefficients is (N+M-1 over N)*(16 bytes [double precision complex])*(Dimension of Krylov subspace used for the integrator). The size of the Krylov subspace is adaptive, i.e., it depends on the particular problem studied; but it can be controlled using the "Minimal_Krylov" and "Maximal_Krylov" inputs in the MCTDHX.inp file.

In addition, M*N_g*[O(10)]*(16 bytes [double precision complex]) of memory is needed for the solution of the orbital equation.